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Abstract5

This work shows how the performance of sparse random embedding depends on the Renyi entropy6

of the dataset, improving upon recent prior works which looked into less fine-grained data statistics7

(NIPS’18, NIPS’19).8

While the prior works relied on involved combinatorics, the novel approach is simpler and9

modular. As the building blocks, it develops the following probabilistic facts of general interest10

(a) a comparison inequality between the linear and quadratic chaos11

(b) a comparison inequality between heterogenic and homogenic linear chaos12

(c) a simpler proof of Latala’s celebrated result on estimating distributions of IID sums13

(d) sharp bounds for binomial moments in all parameter regimes14

2012 ACM Subject Classification Mathematics of computing → Probabilistic algorithms; Theory15

of computation → Random projections and metric embeddings16

Keywords and phrases Random Embeddings; Sparse Projections; Renyi Entropy17

Digital Object Identifier 10.4230/LIPIcs.Submitted.2020.2318

1 Introduction19

1.1 Sparse Random Projections20

The celebrated result due to Johnson and Lindenstrauss [38] states that random linear21

mappings are perfect embedding: they almost preserve distances even when mapping into22

a much lower dimension. More precisely, for any distortion parameter ε > 0 if the entries23

of the m× n matrix A are sampled independently from the standard gaussian distribution24

N (0, 1) and m = Θ(log(1/δ)ε−2) then for every vector x ∈ Rn we have25

(1− ε)‖x‖2 6 ‖Ax‖2 6 (1 + ε)‖x‖2 with probability δ (1)26
27

In applications we may want the above to hold simultaneously for a number of vectors of form28

x = x′ − x′′ (pairwise differences); then the confidence δ needs to be set up accordingly (by29

means of the union bound or covering arguments [46]). The optimality of the dimension m30

has been proven in [40, 37] and the gaussian distribution can be replaced by the Rademacher31

distribution (±1 randomly sampled) [1] or more generally by the sub-gaussian condition [11].32

The result can be seen as a dimension-distortion tradeoff : for an acceptable value of ε33

(which doesn’t have to be extremely small in practice) we may obtain m� n, that is the34

embedding dimension much smaller than the dimension of the input data x. Reducing the35

dimension allows for savings in time and memory when processing big data, while the small36

distortion guarantees that tasks can be done with a similar effect on the embedded data (for37

example the cosine similarity used in data mining [65]). Over years, variants of the above38

Johsnon-Lindenstrauss lemma have found important applications to text mining and image39

processing [7], approximate nearest neighbor search [35, 3], learning mixtures of Gaussians [22],40

sketching and streaming algorithms [44, 49], approximation algorithms for clustering high41

dimensional data [6, 12, 56], speeding up linear algebraic computations [59, 63, 16], analyzing42

combinatorial properties of graphs [28, 54] and even to privacy [9, 43]. On the pure theory43

side, it is worth mentioning the importance for understanding Hilbert spaces in functional44
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23:2 Sparse Random Projections

analysis [39]. Finally, we note that while Equation (1) gives high-probability guarantees, it45

is possible to find the explicit matrix in randomized polynomial time [23] or by means of46

derandomization [41].47

The focus of this paper is on the sparse variant of the Johnson and Lindenstrauss lemma.48

More precisely, we want A in Equation (1) to have at most s entries in each column. This49

allows for speeding up projection time, particularly whenx itself is sparse. This variant has50

been covered by a long line of research [1, 21, 53, 3, 57, 42, 18]. The state-of-art result show51

that keeping the optimal dimension of m = Θ(log(1/δ)ε−2) one can take s = Θ(log(1/δ)ε−1)52

; in other words one gains at least a factor of m/s = ε−1 in the computation time1. These53

results still do not explain the empirically observed performance (much better!), particularly54

the remarkably powerful technique of feature hashing [68] which uses s = 1. It turns out,55

that what explains this phenomena is the underlying data structure. The relevant research56

in [68, 21, 42, 30, 36] has finally established that the certain data characteristic which captures57

sparsity, more precisely the ratio v = ‖x‖∞/‖x‖2, allows for setting58

s = Θ(v2ε−1) ·max(log(1/δ), log(1/δ)2/ log(1/ε)) (2)59
60

as shown in [36]. This offers an additional improvement by a factor of 1/v2.61

The motivation for this work is the following criticism of prior works62

1. The idea of looking at the ratio v = ‖x‖∞/‖x‖2 does not cope well with datasets that63

occur in practice; as explained in [36] the implied bounds are asymptotically tight when64

x is uniformly distributed while real datasets are usually skewed or quite dispersed. For65

example this is the case in text-mining when data x arise from vectorizing documents66

followed by the TF-IDF transform [4]. One should also note that the JL Lemma is, in67

practice, to be applied to pairwise differences of the form x := x′ − x′′ where x′, x′′ ∈ X ,68

and it is very unlikely for such data to be nearly uniform; in fact datasets such as69

images [50] tend to produce vectors with entries distributed with "spikes". This motivates70

looking at parameters other than v = ‖x‖∞/‖x‖2 in the context of random projections.71

2. The proofs are quite complicated, ocasionally sketchy with some numerical mistakes2 and72

do not seem to utilize some relevant techniques for simplifications. Their approach is based73

on seeing Equation (1) as the concentration of the quadratic form x→ ‖Ax‖22, which is74

estimated via multinomial expansions coupled with some combinatorial arguments and75

technical bounds. Regarding relevant techniques, we make the following key points a)76

the standard way of handling quadratic forms is via the Hanson-Wright inequality; here77

prior works does recognize the limitation of the original result [31], but did not consider78

its modern variants [62, 70] and the useful techniques thereof, such as decoupling of79

quadratic forms [66, 24] which effectively bridge quadratic and bilinear forms b) when80

estimating moments of sums of random variables, variants of the (sharp) state-of-art81

result [51] are re-developed; however parts of calculations could have been carried out82

using basic facts from high-dimensional probability which consider moment conditions83

when speaking of sub-gaussian, sub-gamma and other distributions [11, 10].84

Historically, variants of the JL Lemma have been difficult to prove (the original result85

used sophisticated geometric approximations, while the sparse variant [21] relied on86

correlation inequalities [27]). Given the relevance of the problem, there has been always87

demand for simplifying proofs and developing novel techniques; this actually emerged88

1 As shown by [18] one can reduce further sparsity s by B > 1 at the price of increasing the dimension m
by a factor of 2Θ(B) (exponentially). But this seems to be of little use

2 See Appendix A.
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into an established and independent line of research [28, 29, 23, 19]. Thus further effort89

in revisiting and modernizing the toolkit used in recent state-of-art works [30, 36] is90

well-motivated.91

1.2 Our Contribution92

This work offers a solution to the two problems discussed above: we strengthen and to the93

great extent simplify the state-of-art results from prior works.94

1.2.1 Performance of Sparse Random Projections95

We introduce the following parameter, which captures the data dispersion96

vd(x) , sup
|I|<d/2

(∑
i 6∈I |x|di∑
i 6∈I x

2
i

) 1
d−2

/‖x‖2, d > 2. (3)97

98

where I are taken as strict subsets of the support of x. Sample the matrix A as follows99

Sampling Distribution for A ∈ Rm×n

for every column i, select s positions at random (sampling without replacement)
on the selected positions put randomly ±
scale the matrix by 1/

√
s

100

For the matrix as above we prove the following result101

I Theorem 1. Let d = log(1/δ), then the JL Lemma, that is (1), holds for the dimension102

m = Θ(dε−2)103
104

and any sparsity s such that105

vd(x) 6 Θ(sε)1/2 min(log(mε/d)/d, 1/d1/2). (4)106
107

We now discuss the result in detail in the series of remarks below.108

I Remark 2 (Intuition). We give the following rationale for one could conjecture a result like109

the one above: the analysis of sparse random projections establishes that the performance110

depends on the d-th moment of the error expression, where d = log(1/δ) is relatively small;111

it seems reasonable to expect that the assumptions on the data should not include moments112

higher than of order d, particularly bounding ‖x‖∞ seems to be overshooting.113

I Remark 3 (Comparison with previous bounds). Since vd(x) 6 ‖x‖∞/‖x‖2, we immediately114

obtain the previous state-of-art bounds from [36]. This approximation is however rather115

crude, as it merely replaces the d-th norm ‖ · ‖d by ‖ · ‖∞, and our bound can do much116

better. Consider the more explicit example where x2
i = (n/d)−1/d for d values of i and117

x2
i = 1− (n/d)−1/d/(n− d) otherwise. We then have vd(x) = Θ(n−

2
d−2 ) while ‖x‖∞/‖x‖2 =118

Θ(n− 1
d )). Since the best possible sparsity s is roughly proportional to vd(x)−2, our gain over119

the previous approach is by a factor of n
4

d−2−
2
d which is huge for moderate values of d and120

large n (that is in the typical application regime).121

I Remark 4 (Relation to Renyi Entropy). Let’s introduce the probability measure wi ∼ x2
i ,122

then (
∑

i |xi|d/
∑

i x
2
i )

1
d−2 /‖x‖2 = (

∑
i w

d
2
i )

1
d−2 = 2Hd/2((wi))/2 where the Renyi entropy [60]123

of the distribution w is defined as Hd(w) , 1
1−d

∑
i w

d
i and H∞(w) , − log maxi wi when124

d =∞. Under the mild assumption that x such that
∑

i 6∈I x
2
i = Θ(‖x‖22) for all |I| 6 d we125

can thus compare the sparsity achieved in Theorem 1 and the result in [36] as low-order126
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Renyi entropy versus min-entropy. More precisely, our bound on s is better by a factor127

of 2Hd/2((wi))−H∞((wi)), that is the gain is exponential in entropy deficiency understood as128

Hd/2((wi))−H∞((wi)). The well-known bounds from information-theory [14] show that this129

gap can be as big as 1
d/2−1Hd/2((wi)) (which unbounded without some restrictions on x).130

I Remark 5 (Dimension-Sparsity Tradeoffs). It is possible to improve the sparsity parameter s131

by a factor of B at the expense of making the dimension worse by a factor of eΘ(B), exactly132

as in [36]. However this tradeoff does not seem to be interesting from the application-oriented133

point of view.134

1.2.2 Techniques of Independent Interest135

1.2.2.1 From Quadratic to Linear Chaos136

One important novelty in our approach is that we get rid of analyzing quadratic forms, which137

appear due to considering the expression ‖Ax‖22, by an elegant reduction to their linear138

analogues. Although quadratic chaoses of symmetric random variables have been studied in139

past [51, 48], the generic bounds were found intractable to analyze by the authors of prior140

works [30, 36] and other workarounds have been proposed. While they are interesting (for141

example [36] develops a moment bound in spirit of Latala’s result for linear forms [51]), it142

has remained an open problem whether we need them at all. In fact, we answer negatively,143

due to the following result144

I Lemma 6. Let Xi be independent zero-mean, with possibly different distributions. Then145

for even d > 2 we have146

‖
∑
i 6=j

XiXj‖d 6 32‖
∑

i

Xi‖2d.147

148

I Remark 7. The result is fairly general, not requiring symmetry or identical distributions.149

In fact, the constant reduces to 4 if Xi are already symmetric.150

This bound allows for reducing a bulk of technical calculations, and almost directly applying151

existing tractable bounds for linear forms such as those in [52]. The proof uses decoupling [66]152

which allows for upper-bounding the moments of the quadratic form
∑

i 6=j XiXj by the153

moments of bilienar form
∑

i 6=j XiX
′
j , and symmetrization [67] which allows for replacing Xi154

by their symmetrized versions Xi −X ′i at the expense of a constant factor.155

1.2.2.2 Heterogenic Sparse Rademacher Chaos156

Although we reduce the problem to studying linear forms, they are not IID sums. More157

precisely in our case we will be interested in sums of form
∑

i xiXi where Xi are symmetric158

and IID, but the given weights xi can be very different. Such sums are notoriously difficult159

to analyze, the best example being probably the classical Khintchine’s inequality which seeks160

to bound ‖
∑

i xiσi‖d where σi are Rademachers, for a given sequence of weights (xi); it took161

a while until the original bounds [45] have been tightened, in a way that explicitly depend162

on x [33]. While prior works [30, 36] handle this difficulty in our context implicitly (in163

combinatorial analyses of multinomial expansions), we use majorization theory to essentially164

compare the heterogenic and homogenic (easier) setup. We prove165
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I Lemma 8. Let ‖x‖2 = 1 and Xi ∼IID ηiσi where ηi are iid Bernoulli and σi are iid166

Rademacher r.vs. Then for v = vd(x) where vd(x) is as in Equation (3), and even d > 0167

‖
∑

i

xiXi‖d 6 O(‖K−1/2
K∑

i=1
Xi‖d), K = dv−2e.168

169

The result depends on the structure of x captured by v = vd(x), note that the equality holds170

when xi = v for all non-zero weights xi (note that we normalize ‖x‖2 = 1 w.l.o.g.); this is171

the core of our method and we can see it as a sparse analogue of Khintchine’s Inequality172

(Bernoulli variables restrict the summation to a random subset). The result should be173

considered strong and somewhat surprising; per analogy to the case when there are no174

Bernoulli variables, results from majorization theory seem to suggest that the moment should175

be rather minimized for xi that are nearly uniform3 . The answer is in the condition vd(x)176

which is, to a certain degree, a relaxation of the requirement that xi is flat and in the constant177

under O(1). What we prove is not that (xi) with K elements gives the maximum, but that178

the value differs from the actual maximum by at most a constant factor. In our proof we179

use the assumption in Equation (3) and majorization [17] to compare the behavior of sums180

Sk =
∑

i1 6=...ik
x2

i1
· · ·x2

ik
when xi is uniform over K elements versus over the whole space.181

Under the normalizing condition ‖x‖2 = 1 they can be interpreted as birthday collision182

probabilities, which makes the comparison easy to evaluate.183

1.2.2.3 Moments of IID Sums184

We will need a result which provides tight bounds on moments of iid sums. Although this185

problem has been solved by a characterization due to Latala [52], the result seems to be186

little known within the TCS community; instead classical bounds due to Hoeffding [34],187

Chernoff [15], Bernstein [5] or more modern bounds stated sub-gaussian or sub-gamma188

distributions [11] are used. Since the analysis of sparse random projections involves random189

variable with little exotic behavior, the classical inequalities are not sufficient.190

In hope for popularizing the technique and to make the paper self-consistent, we provide191

an alternative and simpler proof of Latala’s result [52].192

I Lemma 9. For zero-mean r.vs. Xi ∼IID X and even d > 0193

‖
n∑

i=1
Xi‖d 6 2e ·max

k

[(
d

k

)1/k

(exp(d/n)− 1)−1/k‖X‖k : max(2, d/n) 6 k 6 d

]
(5)194

195

which implies the following simpler bound196

‖
n∑

i=1
Xi‖d 6

2e2

(1− e−1)1/2 ·max
k

[
d/k · (n/d)1/k · ‖X‖k : max(2, d/n) 6 k 6 d

]
. (6)197

198

I Remark 10. In addition to simplifying the proof, we provide an explicit constant (not given199

in the original proof). For non-symmetric distributions our numerical constant is better than200

the one implied by the original proof. We also note that there is the same matching, up to a201

constant, lower bound [51], so that in the result above we have the equality up to a constant.202

3 The map (xi) → ‖
∑

i
xiσi‖d is Schur-concave in variables x2

i [26].
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1.2.2.4 Sharp Bounds for Binomial Moments203

Having reduced the problem to studying moments of
∑

i ηiσi, we face the problem of204

estimating ‖S‖d where S is binomial. Somewhat surprisingly, the literature does not offer205

good bounds for binomial moments. What we know are combinatorial formulas [47] not206

in a closed asymptotic form, and nearly perfect estimates (up to o(1) relative error) for207

binomial probabilities [64] as well as the tails [20, 55, 58] (see also the survey in [2]); these208

could be in principle used to recover moments but this leads to intractable integrals with209

Kullback-Leibler terms in exponents.210

Since the question is foundational with clear potential for applications beyond our problem,211

we give the following general and detailed answer212

I Lemma 11. Let S ∼ Binom(K, p) where p 6 1
2 , and d > 0 be even. Then213

‖S −ES‖d = Θ(1)


(dKp)1/2 log(d/Kp) < d/K 6 2
KpK/d log(d/Kp) < 2 6 d/K

d
log(d/Kp) max(2, d/K) 6 log(d/Kp) 6 d

(Kp)1/d d < log(d/Kp)

. (7)214

215

I Remark 12. The bound has up to 4 regimes, in which we provide an estimate sharp up216

to a constant. The upper bound (sufficient for our needs) follows from Lemma 9, while the217

lower bound holds because the bound in Lemma 9 is sharp up to an absolute constant [51].218

1.3 Proof Outline219

We actually prove that220

(1− ε)‖x‖22 6 ‖Ax‖22 6 (1 + ε)‖x‖22 with probability δ (8)221
222

from which Equation (8) follows by taking the square roots and using the elementary223

inequalities
√

1 + ε 6 1 + ε, 1− ε 6
√

1− ε. Denoting Z = ‖Ax‖22 we find that (see also [36])224

Z = 1
s

m∑
r=1

Zr, Zr ,
∑
i 6=j

xixjηiηjσiσj . (9)225

226

It can be shown that Zr are negatively dependent and thus their sum obey moment upper-227

bounds for independent random variables [25, 8]. More precisely we have that228

‖Z‖d 6
1
s
‖

m∑
r=1

Zr‖d, Zr ∼IID
∑
i 6=j

xixjηiηjσiσj . (10)229

230

The techniques outlined above, namely Lemma 6 and Lemma 8 show that for K = dvd(x)−2e231

‖Zr‖d 6 O(K−1‖S − S′‖2d), S, S′ ∼IID Binom(K, p). (11)232
233

Since ‖S − S′‖d 6 2‖S −ES‖d (the triangle inequality), by Lemma 11 we obtain234

I Corollary 13. For any even d > 0 we have235

‖Zr‖d 6 O(1)


dp log(d/Kp) < d/K 6 2
Kp2K/d log(d/Kp) < 2 6 d/K

K−1d2

log2(d/Kp) max(2, d/K) 6 log(d/Kp) 6 d

K−1(Kp)2/d d < log(d/Kp)

. (12)236

237
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It now suffices to plug this bound in Lemma 8 (it applies for negatively dependent r.vs.) and238

analyze the 4 different regimes, to obtain moment bounds for Z defined in Equation (9);239

then Theorem 1 is a simple consequence of Markov’s inequality. We stress that the most of240

work has been already done up to this point, due to our modular approach; the details of241

application of Lemma 8 are deferred to the appendix , we note that they also simplify over242

an analogous analysis in [36].243

I Remark 14. At the final stage [36] also obtains analogous bounds (with K defined in terms244

of v = ‖x‖∞/‖x‖2). They are however not derived via a single application of a lemma, but245

rather a mixture of three techniques (direct bounds on quadratic forms, linear forms, and246

the reproved result on the sub-gaussian norm of a binary random variable [13]).247

1.4 Organization248

The rest of the paper is organized as follows: in Section 2 we introduce basic notation and249

some simple auxiliary facts that will be used throughout the discussion, in Section 3 we250

present proofs of the key ingredients of our proof. Details omitted in the proof outline are251

provided in Appendix B and In Section 4 we conclude the work.252

2 Preliminaries253

2.1 Basic Notation254

For a random variable X we define its d-th moment as E|X|d and its d-th norm as ‖X‖d =255

(E|X|d)1/d (this is indeed a norm when d > 1). For the sequence (xi) we define ‖(xi)‖d =256

(
∑

i |xi|d)1/d for 0 < d < 1, ‖x‖∞ = maxi |xi| and ‖xi‖0 = #{i : xi 6= 0}.257

By Bern(p) we denote the Bernoulli distribution, that is 1 with probability p and zero258

otherwise. By Binom(K, p) we denote the binomial distribution with parameters K and p259

(equal in the distribution to the sum of K independent copies of Bern(p).260

2.2 Auxiliary Functions261

During our analysis we will often see two particular functions. Their properties follow by a262

standard application of the derivative test and are summarized below.263

I Proposition 15. The function g(d) = 1/q · a1/q for q > 0 is decreasing when a > 1 and264

for a < 1 it achieves its local maximum at q = log(1/a) with the value g(q) = 1/e log(1/a).265

I Proposition 16. The function g(q) = q · a1/q for q > 0 is increasing when a 6 1 and for266

a > 1 achieves its local minimum at q = log a with the value g(q) = e log a.267

2.3 Probabilistic Techniques268

The following fact (follows by a clever use of the triangle inequality) which shows that, roughly,269

we can replace zero-mean random variables by their symmetrization when calculating norms270

and moments.271

I Proposition 17 (Symmetrization trick [67]). We have272

1
2‖
∑

i

Xiσi‖ 6 ‖
∑

i

Xiσi‖ 6 2‖
∑

i

Xiσi‖273

274

for any zero-mean independent Xi and independent Rademacher random variables σi; this is275

valid for any norm ‖ · ‖.276
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We will also need the following decoupling inequality has been proven very useful in277

attacking quadratic forms278

I Proposition 18 (Decoupling inequality [66]). Let Xi be zero-mean independent r.vs. and279

X ′i be their independent copies. Then for any weights ai,j280

Ef(
∑
i 6=j

ai,jXiXj) 6 Ef(4
∑
i 6=j

ai,jXiX
′
j)281

282

for any convex function f .283

I Remark 19. The summation is over i 6= j, e.g. the quadratic form must be off-diagonal!.284

3 Proofs285

3.1 Quadratic vs Linear Chaos286

Proof of Lemma 6. Let X ′i be independent copies of Xi. The decoupling inequality gives287

‖
∑
i 6=j

XiXj‖d 6 4‖
∑
i6=j

XiX
′
j‖d. (13)288

289

We apply the symmetrization trick to the d-th norm twice: first for random variables Xi with290

any fixed choice of X ′j which gives ‖
∑

i 6=j XiX
′
j‖d 6 2‖

∑
i 6=j XiσiX

′
j‖d (here we use the291

independence of Xi and X ′j) and second for random variables X ′j under the fixed values of292

Xiσi) which gives ‖
∑

i6=j XiX
′
j‖d 6 4‖

∑
i6=j XiσiX

′
jσ
′
j‖d (σ′j is an independent Rademacher293

sequence). For simplicity we denote Xi := Xiσi and Xj := Xjσ
′
j , note that the introduced294

random variables Xiσi and Xjσj are also identically distributed.295

Consider the sum
∑

i,j XiX
′
j =

∑
i(
∑

j 6=i X
′
j)Xi as linear inXi with coefficients depending296

on X ′j , and apply the multinomial theorem which gives297

E[(
∑
i 6=j

XiX
′
j)d|(X ′j)] =

∑
(di)

(
d

2d1 . . . 2dn

)∏
i

(
∑
j 6=i

X ′j)2diEX2di
i .298

299

where we use the symmetry of Xi, so that all odd moments vanish. Again by the multinomial300

theorem we see that301

E(
∑
j 6=i

X ′j)d 6 E(
∑

j

X ′j)d.302

303

Combining the last two bounds gives304

E(
∑
i 6=j

XiX
′
j)d 6 E(X′

j
)[E[(

∑
i 6=j

XiX
′
j)d|(X ′j)]]305

6
∑
(di)

(
d

2d1 . . . 2dn

)
E[
∏

i

(
∑

j

X ′j)2diX2di
i ]306

6 E(
∑

i

(
∑

j

X ′j)Xi)d
307

= E(
∑

i

Xi)d(
∑

j

X ′j)d
308

= E(
∑

i

Xi)2d
309

310
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which can be stated as311

‖
∑
i 6=j

XiX
′
j‖d 6 ‖

∑
i

Xi‖2d. (14)312

313

By combining Equation (13) and Equation (14), and keeping in mind that Xi above are the314

symmetrized versions of original random variables, we obtain that for original (only centered)315

random variables Xi316

E‖
∑
j 6=i

XiXj‖d 6 16E‖
∑
j 6=i

Xiσi‖d317

318

and the result follows by one more application of the symmetrization trick. J319

3.2 Heterogenic vs Homogenic Chaos320

Proof of Lemma 8. By the multinomial expansion and the symmetry of Zi (which implies321

that the odd moments vanish) we obtain322

E(
∑

i

xiXi)d =
∑
(di)

(
d

2d1 . . . 2dn

)
p‖(di)‖0

∏
i

x2di
i323

324

where the summation is over non-negative sequences (di) for i = 1, . . . , n such that
∑

i di =325

d/2, and we denote ‖(di)‖0 = #{i : di > 0}. Considering possible values of k = ‖(di)‖0 we326

find that the above expression is a non-negative combination of327

S
[d]
k (x) =

∑
i1 6=... 6=ik

x2d1
i1

. . . x2dk
ik

328

329

where possible values of k are 1 6 k 6 min(d/2, n0) where n0 = ‖(xi)‖0. We now apply our330

assumption on x in an iterative manner, to xik
, xik−1 . . ., obtaining331

S
[d]
k (x) 6 v

2
∑

i:di>1
(di−1) ∑

i1 6=...6=ik

x2
i1
. . . x2

ik
.332

333

Here we have used the fact that vd(x) is increasing in d, so vk(x) 6 v when k 6 d; this334

follows from seeing vd(x) as the power mean of order d− 2 and weights x2
i /
∑

i6∈I x
2
i [32, 69].335

We make the following important observation: the equality holds whenever xi is flat336

with the value v, e.g. all non-zero entries are equal to v. Observe that the sums Sk(x) =337 ∑
i1 6=...6=ik

x2
i1
. . . x2

ik
are elementary symmetric polynomials in variables yi = x2

i where338 ∑
i yi =

∑
i x

2
i = 1, hence over the probability simplex. The elementary symmetric functions339

are Schur-concave [17], and thus they are maximized at the uniform distribution, in our340

case when xi = n−1/2. In fact, Sk(x) is the probability that k independent samples from341

the distribution pi = x2
i do not collide. For any sequence (x2

i ) which has N non-zero equal342

entries and
∑

i x
2
i = 1 we have that343

Sk(x) = N · (N − 1) · · · (N − k + 1)/Nk
344
345

since N > k and since k 6 d, using Stirling’s approximation [61] we obtain346

Sk(x) =
k−1∏
i=0

(1− i/N) > k!/kk = Θ(1)k > Θ(1)d.347

348

Clearly we also have Sk(x) 6 1 for any x. Thus if we replace (xi) by a sequence such that349

xi = v for K = v−2 values of i (e.g., flat) we loose at most a factor of Θ(1)k 6 Θ(1)d in the350

upper bound. J351
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3.3 Moments of IID Sums352

Proof of Lemma 9. We have the following chain of estimates353

E(
∑

i

Xi)d =
∑

di:d1+...+dn=d,di>2

(
d

d1 . . . dn

)∏
i

EXdi
i354

6
∑

di:d1+...+dn=d,di>2

∏
i

(
d

di

)
EXdi

i355

6
∑
di>2

∏
i

(
d

di

)
EXdi

i356

6

(
d∑

k=2

(
d

k

)
‖X‖k

k

)n

.357

358

Applying this for Xi := Xi/t we have for any t > 0359

E(t−1
∑

i

Xi)d 6

(
d∑

k=2

(
d

k

)
‖X‖k

k/t
k

)n

.360

361

Thus ‖
∑

i Xi‖d 6 et for any t such that the right-hand side is at most e, equivalently362

d∑
k=2

(
d

k

)
‖X‖k

k/t
k 6 exp(d/n)− 1363

364

which is satisfied for365

t = 2 max
k=2...d

(
d

k

)1/k

(exp(d/n)− 1)−1/k‖X‖k.366

367

This proves the first part. Observe that for k > 2 we have368 (
d

k

)1/k

(exp(d/n)− 1)−1/k 6
ed

k exp(d/kn) ·
1

(1− exp(−1))1/2369

370

where we use the elementary inequalities
(

d
k

)
6 (de/k)k and exp(u)− 1 > exp(u) · (1− e−1)371

for u > 1. The function u→ u/ exp(u) decreases for u > 1; applying this to u = d/kn gives372 (
d

k

)1/k

(exp(d/n)− 1)−1/k 6
en

(1− e−1)1/2 , k 6 d/n.373

374

Since ‖X‖k increases in k we have375

max
k=2...d,k6d/n

(
d

k

)1/k

(exp(d/n)− 1)−1/k‖X‖k 6
en‖X‖d/n

(1− e−1)1/2 .376

377

We have (exp(d/n)− 1)−1/k 6 (d/n)−1/k due to the elementary inequality exp(u)− 1 > u,378

and
(

d
k

)
6 (de/k)k for any k. This gives379

max
k=2...d

(
d

k

)1/k

(exp(d/n)− 1)−1/k‖X‖k 6 e max
k=2...d

d/k · (n/d)1/k · ‖X‖k380

381

When d/n > 2 we have that d/k · (n/d)1/k · ‖X‖k = n‖X‖d/n ·2−1/2 for k = d/n. Comparing382

the last two equations we obtain383

max
k=2...d,k6d/n

(
d

k

)1/k

(exp(d/n)− 1)−1/k‖X‖k 6 C max
k=2...d,k>d/n

d/k · (n/d)1/k · ‖X‖k384

385

with C = e
(1−e−1)1/2 , which completes the proof. J386
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3.4 Binomial Moments387

Proof of Lemma 11. Applying Lemma 9 we obtain388

‖S −ES‖d 6 O(1) ·max
{

(d/k) · (Kp/d)1/k : max(2, d/K) 6 k 6 d
}
.389

390

because S ∼
∑

i Xi where Xi ∼ Bern(p) and ‖Xi −EXi‖d = (p(1− p)d−1 + (1− p)pd−1)1/d
391

so that ‖Xi −EXi‖d = Θ(p)1/d for p 6 1/2.392

The expression under the maximum is proportional to k−1 · a1/k where a = Kp/d. The393

claim follows by applying Proposition 15, namely a) when max(2, d/K) 6 log(1/a) 6 d (that394

is, inside of the interval) we have necessarily a 6 e−2 < 1 our maximum is at k = log(1/a)395

b) when log(1/a) > d we must have a < 1 and our maximum is at k = d and c) when396

log(1/a) < max(2, d/K) then the maximum is at k = max(2, d/K) regardless whether a < 1397

or a > 1. J398

4 Conclusion399

We have proven novel bounds for sparse random projections, showing that the performance400

depends on the data statistic closed to Renyi entropy. Some intereging problems we leave for401

future work are402

How do results extend to non-Rademacher matrices?403

Can we use majorization theory to fully characterize worst case for the linear chaos?404
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A Some remarks on prior works565

Lemma 2.1 in [36] gives the following bound (expressed in our notation)566

‖Zr‖d .


dp d = 2 or d 6 pe/v2

min
(

d2v2

log(dv2/p) ,
d

log(1/p)

)
1 6 log(dv2/p) 6 d

v2(p/dv2)2/d d < log(dv2/p)

567

568

There is a minor mistake in splitting the branches: they emerge from taking the derivative569

test of the function d2v2u−2(p/dv2)1/u where 1 6 u 6 d/2 (Lemma D.1). Here the local570

maxima occurs at u = log(dv2/p)/2 and when comparing this with edges u = 1 and u = d/2571

we obtain the conditions 2 6 log(dv2/p) and log(dv2/p) 6 d. Thus the splitting conditions572

should be bit different; this particular issue doesn’t affect the bounds expressed in the573

asymptotic notation; we report it with intent to motivate our effort in giving a simple and574

clear proof.575

https://arxiv.org/pdf/1510.05517.pdf


M.Skorski 23:15

B Concluding Main Theorem576

Without loosing generality we assume that d = log(1/δ) is even. Recall that we denote577

v = vd(x), also without loosing generality we assume that v−2 is an integer. For K = v−2
578

define the following quantities579

I1 , max
q

{
d/q · (m/d)1/q · qp : log(q/Kp) 6 q/K 6 2, 2 6 q 6 d

}
580

I2 , max
q

{
d/q · (m/d)1/q ·K(Kp2K/q)2 : log(q/Kp) 6 2 6 q/K, 2 6 q 6 d

}
581

I3 , max
q

{
d/q · (m/d)1/q ·K−1q2/ log2(q/Kp) : max(2, q/K) 6 log(q/Kp) 6 q, 2 6 q 6 d

}
582

I4 , max
q

{
d/q · (m/d)1/q ·K−1(Kp)2/q : q 6 log(q/Kp), 2 6 q 6 d

}
583
584

Following the proof outline we arrive at Corollary 13. Taking into account Lemma 11 and585

Lemma 9, implies586

‖
m∑

r=1
Zr‖d 6 O(max(I1, I2, I3, I4))587

588

The goal is to prove that for t = sε we have589

‖
m∑

r=1
Zr‖d 6 t/e (15)590

591

and then the result follows from Markov’s inequality. We give first bounds for I1, I2, I4 as592

they are fairly easy to obtain. The case of I3 is analyzed as the last one.593

B.0.1 First Branch594

We will show the following bound595

I Lemma 20. We have596

I1 6 O(dmp2)1/2.597
598

Proof of Lemma 20. We have599

I1 = max
q

{
pd(m/d)1/q : log(q/Kp) 6 q/K 6 2, 2 6 q 6 d

}
600

6 (dmp2)1/2
601
602

where the inequality follows because m > d and 1/q 6 1
2 (for q satisfying the constraints).603

This completes the proof. J604

B.0.2 Second Branch605

We will show the following bound606

I Lemma 21. For p 6 2e−2 we have607

I2 6 (dmp2)1/2.608
609
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Proof of Lemma 20. For q satisfying the constraint we have K/q > e−2/p which, due to610

p 6 2e−2, implies K/q > 1/2. Then p2K/q 6 p (recall that p < 1!) and thus611

I2 6 max
q

{
d/q · (m/d)1/q ·Kp : log(q/Kp) 6 2 6 q/K, 2 6 q 6 d

}
.612

613

For q within the constraints we have K/q 6 1
2 and therefore614

I2 6
p

2 max
q

{
d · (m/d)1/q : log(q/Kp) 6 2 6 q/K, 2 6 q 6 d

}
.615

616

Since m/d > 1 the expression under the maximum decreases with q, thus is not bigger than617

the value at q = 2. Thus I2 6 p(dm)1/2/2 and the result follows. J618

B.0.3 Fourth Branch619

We will prove the following bound620

I Lemma 22. We have621

I4 6

{
(dmp2)1/2 log(dv4/mp2) 6 2
dv2/ log(dv4/mp2) log(dv4/mp2) > 2

.622

623

Proof of Lemma 22. We have624

I4 = max
q

{
K−1 · d/q · (K2p2m/d)1/q : q 6 log(q/Kp), 2 6 q 6 d

}
.625

626

Let a = K2p2m/d, the expression under the maximum is proportional to 1/q · a1/q. We now627

apply Proposition 15: for a > 1 the maximum is not bigger than the value at q = 2, so628

I4 6 (dmp2)1/2.629
630

We now can assume a < 1, equivalent to K2p2m < d. The global maximum is at q = log(1/a),631

thus our maximum is still at q = 2 when log(1/a) 6 2 and otherwise is not bigger than the632

value at q = log(1/a). We then obtain633

I4 6 K−1d/ log(d/mp2K2) 6 K−1d = dv2.634
635

This complete the proof. J636

B.0.4 Third Branch637

We will show the following bound638

I Lemma 23. Suppose that v2 > sε/d2, then639

I3 6 O(dmp2)1/2 +O(dv/ log(dv2/p))2
640
641

Proof of Lemma 23. The proof is based on splitting the maximum into three regimes:642

q ∈ [2, 3],3 6 q 6 log(m/d) and log(m/d) 6 q 6 d. Define643

I0 = max
q

{
d/q · (m/d)1/q · v2q2/ log2(qv2/p) : 2 6 log(qv2/p) 6 q 6 d, 2 6 q 6 3

}
I− = max

q

{
d/q · (m/d)1/q · v2q2/ log2(qv2/p) : 2 6 log(qv2/p) 6 q 6 d, 3 6 q 6 log(m/d)

}644

I+ = max
q

{
d/q · (m/d)1/q · v2q2/ log2(qv2/p) : 2 6 log(qv2/p) 6 q 6 d, log(m/d) 6 q 6 d

}
645
646
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so that we have I3 6 max(I0, I+, I−) (for convenience we replace the constraint max(2, qv2) 6647

log(qv2/p) in I3 by the weaker one 2 6 log(qv2/p)). By the assumptions we have v2/p >648

mε/d2. Since m > dε−2 we have ε > (d/m)1/2, and thus649

v2/p > (m/d)1/2 · d−1.650
651

B Claim 24. We have I− 6 O(d2v2/ log2(dv2/p) when log d 6 5 log(m/d)
12 .652

Proof of Claim. For any q satisfying the restrictions it holds that653

q > log(v2/p)

>
log(m/d)

2 − log d

654

>
log(m/d)

12 .655
656

We then have (m/d)1/q 6 O(1) and thus657

I− 6 max
q

{
d · qv2/ log2(qv2/p) : 2 6 log(qv2/p) 6 q 6 d, 3 6 q 6 log(m/d)

}
658
659

Considering the auxiliary function u→ u/ log2 u with u = qv2/p > e2, we see that it decreases660

in u and hence in q for fixed v2 and p. The expression is thus not smaller than its value at661

q = d, which gives662

I− 6 d2v2/ log2(dv2/p)663
664

and completes the proof. J665

B Claim 25. We have I− 6 d2v2/ log2(dv2/p) when log d > 5 log(m/d)
12 .666

Proof of Claim. We have that dv2/p > mε/d > (m/d)1/2 and therefore667

I− 6 dv2d(m/d)1/3 log(m/d)668

6 dv2(m/d)5/12/ log2(m/d)669

6 dv2(m/d)5/12/ log2(dv2/p)670

6 O(d2v2/ log2(dv2/p)).671
672

which completes the proof. J673

B Claim 26. We have I+ 6 O(d2v2/ log2(dv2/p))674

Proof of Claim. We have (m/d)1/q 6 e for q > log(m/d), thus675

I+ 6 d ·max
q
{qv2/ log2(qv2/p) : 2 6 max(log(qv2/p), log(m/d)) 6 q 6 d}676

677

Considering the auxiliary function u→ u/ log2 u with u = qv2/p > e2, we see that it decreases678

in u and hence in q for fixed v2 and p. The expression is thus not smaller than its value at679

q = d, which gives680

I+ 6 O(d2v2/ log2(dv2/p))681
682

and the claim follows. J683
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B Claim 27. We have I0 6 O((dmp2)1/2).684

Proof of Claim. We have I0 6 O(v2(md)1/2) because (m/d)1/q 6 (m/d)1/2 (due to m/d > 1685

and q > 2). However for q ∈ [2, 3] the constraint log(qv2/p) 6 q gives v2 6 O(p). Thus686

I0 6 O(p(md)1/2)687
688

which completes the proof. J689

The result follows now by combining the above three claims. J690

B.0.5 Merging Branch Bounds691

To conclude the main result it suffices to satisfy692

c ·max(I1, I2, I3, I4) 6 sε (16)693
694

for some absolute constant c. The condition in Equation (16) for I1, I2 is equivalent to695

c · (dmp2)1/2 6 sε, which holds when696

m > Ω(dε−2). (17)697
698

To satisfy Equation (16) for I4 we require, in addition to Equation (17), that cdv2 6 sε,699

equivalent to700

v 6 O((sε)1/2/d1/2). (18)701
702

Finally, in order to satisfy Equation (16) for I3 we observe that, under the restriction703

v2 > sε/d2 (19)704
705

the bound in Lemma 23 gives706

I3 6 O(dmp2)1/2 +O(dv/ log(mε/d))2
707
708

which follows because log(dv2/p) > log(sε/dp) = log(mε/d). Thus in addition to Equa-709

tion (17) and it suffices that710

v 6 O((sε)1/2 log(mε/d)/d) (20)711
712

Now observe that for713

v = Θ(sε)1/2 min(log(mε/d)/d, 1/d1/2) (21)714
715

the condition in is automatically satisfied. Thus the theorem holds for v as above, and716

clearly for any smaller v.717
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